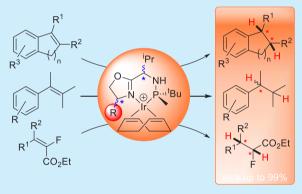
C Cite This: Org. Lett. 2019, 21, 807–811

Letter
pubs.acs.org/OrgLett

Extending the Substrate Scope in the Hydrogenation of Unfunctionalized Tetrasubstituted Olefins with Ir-P Stereogenic Aminophosphine–Oxazoline Catalysts


Maria Biosca,[†] Ernest Salomó,[‡] Pol de la Cruz-Sánchez,[†] Antoni Riera,^{‡,§}[®] Xavier Verdaguer,^{*,‡,§}[®] Oscar Pàmies,^{*,†} and Montserrat Diéguez^{*,†}[®]

[†]Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain [‡]Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac, 10, 08028 Barcelona, Spain

[§]Departament Química Inorgànica i Orgànica, Secció Orgànica, Universitat de Barcelona, C/Martí i Franquès, 1, 08028 Barcelona, Spain

Supporting Information

ABSTRACT: Air-stable and readily available Ir-catalyst precursors modified with MaxPHOX-type ligands have been successfully applied in the challenging asymmetric hydrogenation of tetrasubstituted olefins under mild reaction conditions. Gratifyingly, these catalyst precursors are able to efficiently hydrogenate not only a range of indene derivatives (ee's up to 96%) but also 1,2-dihydronapthalene derivatives and acyclic olefins (ee's up to 99%), which both constitute the most challenging substrates for this transformation.

symmetric hydrogenation (AH) is one of the most A common, reliable, and environmentally friendly industrial processes for the preparation of chiral compounds, such as drugs and crop-protecting chemicals.¹ Its strategic relevance has spurred research in both academia and industry over the last decades. Nowadays, an important number of Rh, Ru, and Ir catalysts exist for the AH of a broad range of substrates.⁴ However, for some substrates such as tetrasubstituted olefins, attaining high activity and enantioselectivity is still a challenge. Their reduction would open up opportunities to simultaneously generate two vicinal tertiary stereocenters, which are present in many natural and high-valued products.³ Achieving high enantiocontrol is even more difficult if the olefin lacks a coordinative group that can assist in the transfer of the chiral information from the catalyst to the product.² The AH of tetrasubstituted unfunctionalized olefins is therefore underdeveloped compared to the AH of olefins that contain a coordinative functional group.³ To date, high catalytic performance has been reported in very few publications and with a limited substrate scope. In addition, for each type of olefin a different ligand family was required. In 1999 Buchwald's group reported the first successful AH of tetrasubstituted unfunctionalized olefins.⁴ A series of indenes were hydrogenated using the zirconozene catalyst 1 (Figure 1) with moderate-to-high enantioselectivities (ee's in the range 52–99%).⁵ They found that enantioselectivity was negatively

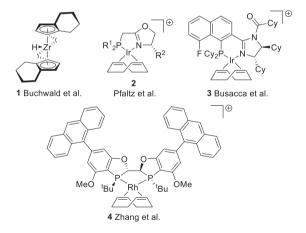


Figure 1. Representative catalysts for the AH of unfunctionalized tetrasubstituted olefins.

affected by substituents other than a methyl in the benzylic position of the substrate. In addition to the low substrate scope, the high catalyst loading (8 mol %), the high H_2 pressure (typically >110 bar) required, and the low stability of

Received: December 21, 2018 Published: January 16, 2019